EFECTO WILSON-BAPPU EN ESTRELLAS FRÍAS: RELACIÓN FÍSICA ENTRE EL ANCHO DE LA LÍNEA DE EMISIÓN K DE Ca11 Y LA GRAVEDAD SUPERFICIAL

Fis. FAIBER DANILO ROSAS PORTILLA

UNIVERSIDAD DE GUANAJUATO - CAMPUS GUANAJUATO DIVISIÓN DE CIENCIAS NATURALES Y EXACTAS POSGRADO EN CIENCIAS (ASTROFÍSICA)

2019

EFECTO WILSON-BAPPU EN ESTRELLAS FRÍAS: RELACIÓN FÍSICA ENTRE EL ANCHO DE LA LÍNEA DE EMISIÓN K DE Ca11 Y LA GRAVEDAD SUPERFICIAL

Fis. FAIBER DANILO ROSAS PORTILLA

TESIS DE MAESTRÍA COMO REQUISITO PARA OPTAR POR EL TÍTULO DE MAESTRO EN CIENCIAS (ASTROFÍSICA)

DIRECTOR **Dr. KLAUS-PETER SCHRÖDER** DPTO. DE ASTRONOMÍA - UNIVERSIDAD DE GUANAJUATO

CODIRECTOR **Dr. DENNIS JACK** DPTO. DE ASTRONOMÍA - UNIVERSIDAD DE GUANAJUATO

UNIVERSIDAD DE GUANAJUATO - CAMPUS GUANAJUATO DIVISIÓN DE CIENCIAS NATURALES Y EXACTAS POSGRADO EN CIENCIAS (ASTROFÍSICA)

2019

Somos el resultado de la continua creación y destrucción de las estrellas, que por un breve instante de tiempo se hacen a un par de ojos, para contemplarse y estudiarse a sí mismas. Y mientras observaba las estrellas, sin pensarlo, llegaste a mi vida de la mano de ellas, formando galaxias, e incluso universos, con tan solo sonreír.

Agradecimientos

En mi viaje a través de un universo con «infinitos» mundos, tuve la fortuna de coincidir en tiempo y espacio con personas maravillosas que me han guiado y acompañado en el gran camino que es la vida. Es mi mayor alegría contar con el apoyo incondicional de mis padres Hugo y Nohora, y de mi hermana Carolina, pues son ellos mi mayor inspiración día con día, ninguno de mis logros sería posible sin ellos.

Un agradecimiento especial a mis directores de tesis, los doctores Klaus-Peter Schröoder y Dennis Jack, por su guía excepcional en este trabajo, ampliando mi visión del cosmos con su acompañamiento constante.

Gracias a todo el grupo de investigadores del TIGRE, por permitirme ser parte de su excelente grupo de investigación internacional. A todos los miembros del Observatorio de Hamburgo, por ser mi casa mientras escribía este trabajo. Y a todos los profesores del Departamento de Astronomía de la Universidad de Guanajuato, por enseñarme esta hermosa ciencia que es el estudio de los astros.

Al Consejo Nacional de Ciencia y Tecnología - CONACyT y en general a todo el pueblo mexicano, por su valioso interés de apoyar a la ciencia y en especial la astronomía con esta investigación.

EFECTO WILSON-BAPPU EN ESTRELLAS FRÍAS: RELACIÓN FÍSICA ENTRE EL ANCHO DE LA LÍNEA DE EMISIÓN K DE Ca11 Y LA GRAVEDAD SUPERFICIAL

RESUMEN

En este trabajo se estudia la relación entre el ancho a media altura de la línea de emisión K de Ca II ($\lambda = 3933,7$ Å) y la gravedad superficial para una muestra de 14 estrellas frías de tipo espectral F a M con luminosidades Ia, Ib, II, III; y 2 estrellas de la secuencia principal.

Se usan espectros de alta resolución (~ 20000) y buena S/N (~ 100) obtenidos con el Telescopio Internacional de Guanajuato Robótico-Espectroscópico - TIGRE, perteneciente al proyecto entre la Universidad de Hamburgo (Alemania), Universidad de Guanajuato (México) y la Universidad de Liège (Bélgica). Las nuevas paralajes estelares obtenidas por el proyecto *Gaia* DR2, permiten estimar las luminosidades y masas estelares con buena aproximación. Las temperaturas efectivas de la muestra estelar se estiman usando el software **iSpec**.

Nuestro análisis muestra una clara relación entre el ancho de la línea de emisión K de Ca II y la gravedad superficial de la forma $\log W_0 \propto \alpha \log g \mod \alpha = -0.233 \pm 0.018$, considerando la evidencia de una posible dependencia secundaria débil con la temperatura efectiva y consecuente con las estimaciones teóricas propuestas anteriormente por otros autores.

WILSON-BAPPU EFFECT IN COOL STARS: PHYSIC RELATION BETWEEN THE WIDTH OF K EMISSION LINE OF Call AND SURFACE GRAVITY

ABSTRACT

In this work we study the relation between the width at half maximum to the K emission line of CaII ($\lambda = 3933,7$ Å) and the surface gravity for a stellar sample of 14 cool stars with spectral type F to M and luminosities Ia, Ib, II, III; and 2 main sequence stars.

We use high resolution spectra (~ 20000) and good S/N (~ 100) obtained with the International Telescope of Guanajuato - TIGRE, belong to the project between the University of Hamburg (Germany), University of Guanajuato (Mexico) and the University of Liège (Belgium). The new parallaxes obtained by the project *Gaia* DR2, allow to estimate the luminosities and stellar masses with good approximation. The effective temperatures of the stellar sample were estimated using the software **iSpec**.

Our analysis shows a clear relation between the width of the K emission line of Ca II and the surface gravity with the form $\log W_0 \propto \alpha \log g$ with $\alpha = -0.233 \pm 0.018$, considering the evidence of a possible weak secondary dependence on the effective temperature and consistent with previously theoric estimations proposed by other authors.

Índice general

1.	Introducción	1
	1.1. Motivación	3
	1.2. Objetivos	4
	1.2.1. Objetivo General	4
	1.2.2. Objetivos Específicos	4
2.	La Atmósfera Estelar	5
	2.1. La Fotósfera	5
	2.2. Las Líneas Espectrales	9
	2.3. La Cromósfera	11
3.	El Efecto Wilson-Bappu 1	15
	3.1 Antecedente Histórico	15
	3.2 Descubrimiento	15
	3.3 Estudios Posteriores	16
	3.4. La Física del WBE	18
	Den ferreden en Diele II. Die entere Dietelen	าก
4.	Parametros Físicos de la Muestra Estelar 2 4.1 Selección de la Muestra Estelar	13 22
	4.1. Seleccion de la Muestra Estelar	23 55
	4.2. Temperatura Electiva	∠ວ ວ⊿
	4.3. Masa Estelar	24 94
	4.4. Gravedad Superlicial	51
5.	Medición del Ancho de Emisión de la Línea K de CaII	35
	5.1. Etapa 1: Lectura de datos	36
	5.2. Etapa 2: Ajuste del espectro usando splines	37
	5.3. Etapa 3 y 4: Mínimos, máximos y valor medio de la línea de emisión K	38
	5.4. Etapa 5: Cálculo de W_0	38
6.	Análisis y Discusión 4	13
	6.1. Relación entre W_0 y g	43
	6.2. Dispersión e Incertidumbre de los Datos	46
	6.2.1. HD156014	47
	6.2.2. HD159181 y HD209750	48

	 6.3. Comparación con Resultados Previos	48 49
7.	Conclusiones 7.1. Trabajo Futuro	53 54
Bi	bliografía	57

Índice de cuadros

 4.1. 4.2. 4.3. 4.4. 	Resultados de T_{eff} , $\log g$ y [M/H] encontrados con iSpec Paralajes, magnitudes y luminosidades de la muestra estelar Estimación de la masa para la muestra estelar Estimación de la gravedad superficial para la muestra estelar	25 29 31 33
5.1.	Ancho de la línea de emisión de Ca ${\mbox{\tiny II}}$ para la muestra estelar \hdots	40
6.1.	Ancho de la línea de emisión de Ca II para la muestra estelar considerando una dependencia débil con la temperatura	46

Índice de figuras

1.1.	Línea de emisión K de CaII en el espectro de Arcturus (HD 124897) cercana a $\lambda = 3933,7$ Å. La emisión cromosférica se muestra como una línea doblemente invertida en el interior de una línea de absorción fotosférica.	2
1.2.	Medición del ancho de la línea de emisión K de Ca II en el espectro de ρ Cygni (HD 205435). Los asteriscos marcan los puntos máximos y mínimos de los picos «rojo» y «azul» encontrados mediante un ajuste por splines (línea azul). Las líneas punteadas marcan la mitad entre los puntos máximos y mínimos de cada pico y zona gris representa la incertidumbre en la medición. El ancho de la línea de emisión K de Ca II (W_0) corresponde a la zona entre las líneas punteadas	3
2.1.	Esquema de la estructura de estrellas de tipo <i>solar</i> . Las zonas mostradas corresponden a: 1) Núcleo estelar, 2) Zona radiativa, 3) Zona convectiva, 4) Fotósfera, 5) Cromósfera. La corona es la región alrededor de la cromósfera y la zona de transición está ubicada entre ellas. El esquema no está a escala. Fuente: Guerra-Olvera (2014).	6
2.2.	Curvas de radiación de cuerpo negro a diferentes temperaturas. Se puede observar como la pendiente del continuo varía con la temperatura y el máximo se desplaza hacia la izquierda para temperaturas más altas	7
2.3.	Comparación entre un modelo de espectro estelar a $T = 4700$ K generado con el código PHOENIX, y una curva de cuerpo negro a la misma temperatura. La resolución del espectro se ha disminuido en un factor	0
2.4.	Relación entre la intensidad de la línea de absorción y la profundidad en	0
	la fotósfera para una línea espectral típica. Fuente: Carroll & Ostlie (2006).	11
2.5.	Perfiles de temperatura (línea solida) y densidad de masa (línea punteada) en relación con la altura de la atmósfera solar. Se muestra también las zonas de los perfiles donde se forman algunas líneas espectrales. Fuente: Vernazza et al. (1973) y modificado por Carroll &	
	Ostlie (2006)	13

2.6.	Variación del ancho de la línea de emisión K de CaII con la gravedad superficial para estrellas de tipo solar con $T_{\text{eff}} = 5780$ K usando el código PHOENIX. Fuente: Guerra-Olvera (2014).	14
3.1.	Relación entre el logaritmo de los anchos de emisión corregidos de Ca II y las magnitudes absolutas de Yerkes en el articulo de Wilson & Bappu (1957). El conjunto de estrellas ha sido dividido en tres tipos espectrales G, K, M.	16
3.2.	Perfil típico de la línea de emisión K de CaII. Se indican los mínimos de la emisión como K_{1B} y K_{1R} , los máximos como K_{2B} y K_{2R} , y la autoabsorción como K_3 . Los subíndices B y R corresponden al lado «azul» y «rojo» de la línea de emisión.	19
4.1.	Diagrama Hertzsprung-Russell observacional con 22.000 estrellas del Catálogo <i>Hipparcos</i> y 1.000 del Catálogo <i>Gliese</i> de estrellas cercanas. Imagen original creada por Richard Powell, Fuente: http://www. atlasoftheuniverse.com/hr.html	26
4.2.	Malla de trayectorias evolutivas con $[M/H] = 0,02$ para diferentes masas estelares. La malla se calculó usando el código de Pols et al. (1998). Las barras representan la incertidumbre en luminosidad estelar y temperatura efectiva	30
5.1.	Definición de los parámetros LMIN, LMAX, LLIN y RANG necesarios en el archivo de configuración de HIEW. Con línea azul se muestra la interpolación realizada a los datos del espectro en el rango (LMIN, LMAX). La zona gris representa la sección del espectro que el programa omitirá al encontrar los valores mínimos y máximos en la etapa 3	37
5.2.	Definición de λ_{K1} , λ_{K2} , I_{K1} , I_{K2} , λ_M e I_M . Se han marcado con el subíndice B y R los valores correspondientes a los picos «azul» y «rojo» respectivamente.	39
5.3.	Anchos y perfiles de la línea de emisión K de Ca II para dos estrellas con diferente gravedad. a) Perfil para HD186791 con log $g = 1,13$ y b) Perfil para HD10476 con log $g = 4,49$. La línea punteada indica la mitad de la intensidad entre el máximo y el mínimo para cada uno de los picos azul y rojo. La zona gris representa la incertidumbre de la medición	41
5.4.	Comparación de la medición de W_0 de la literatura con la realizada en este trabajo, para algunas estrellas de la muestra estelar. Círculos violetas corresponden a Wilson & Bappu (1957), cuadrados verdes a Park et al. (2013), rombos azules a Wallerstein et al. (1999) y triángulos amarillos a Pace et al. (2003).	42

6.1.	Relación entre log g y log W_0 para la muestra estelar. Las barras indican	
	lineal dende se emitieren les estrelles 12) HD150181 y 16) HD200750	
	El color de los puntos representa la temperatura efectiva estimada de	
	acuerdo a una escala en kelvin	44
6.2	Relación entre $\log q$ v $\log W'_{\rm c}$ para la muestra estelar considerando	тт
0.2.	una dependencia débil con la temperatura dada por la ecuación 6.2.	
	Las barras indican la incertidumbre de las cantidades. La línea azul	
	corresponde a un ajuste lineal. El color de los puntos representa la	
	temperatura efectiva estimada de acuerdo a una escala en kelvin	47
6.3.	Comparación de $\log W_0$ usando la ecuación 6.6 propuesta en este trabajo	
	y los valores obtenidos en la Tabla 5.1. La línea azul corresponde a un	
	ajuste lineal por mínimos cuadrados. Se muestra la correlación entre los	
0.4	valores calculados y observados.	50
6.4.	Comparación de log W_0 usando la ecuación propuesta por a) Neckel (1074) (acuación 6.7) y b) Park et al. (2012) (acuación 6.8) y las valence	
	(1974) (ecuación 0.7) y b) Faik et al. (2013) (ecuación 0.8) y los valores	
	mínimos cuadrados. Se muestra la correlación entre los valores calculados	
	v observados.	51
		-
B.1.	Ancho de la línea de emisión K de Ca II para HD8512	67
B.2.	Ancho de la línea de emisión K de Ca II para HD10476	68
B.3.	Ancho de la línea de emisión K de Call para HD2/3/1.	68 68
В.4. Р 5	Ancho de la línea de emisión K de Call para HD28305	69 60
D.J. R 6	Ancho de la línea de emisión K de Call para HD21308	09 70
В.0.	Ancho de la línea de emisión K de Ca II para HD\$1555.	70
B.8.	Ancho de la línea de emisión K de Ca II para HD82210	71
B.9.	Ancho de la línea de emisión K de Ca II para HD96833	71
B.10	Ancho de la línea de emisión K de Ca II para HD114710.	72
B.11	Ancho de la línea de emisión K de Ca11 para HD124897.	72
B.12	2. Ancho de la línea de emisión K de Ca II para HD156014.	73
B.13	3. Ancho de la línea de emisión K de Ca II para HD159181	73
B.14	Ancho de la linea de emisión K de Ca II para HD186791	74
Б.15 D.16	Ancho de la línea de emisión K de Call para HD205435.	(4 75
D.10). Ancho de la linea de emisión K de Call para $HD209750$	- (D

Lista de Apéndices

A. Código fuente del programa Half-Intensity Emission Width (HIEW)

 $\mathbf{59}$

B. Anchos y perfiles de la línea de emisión K de Ca11 de la muestra estelar 67