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Abstract

In a small fraction of young stellar systems, disks with a low excess in the
near–infrared but a high excess in longer wavelengths have been discovered.
This has been interpreted as evidence that these disks called transitional
disks (TDs) have central holes which have practically no dust. More re-
cently, disks that show a significant excess in the near–infrared have been
discovered. Such an excess indicates the presence of an optically thick inner
disk. This inner disk is separated by an outer disk which also has a high op-
tical depth. In this way the spectral energy distribution (SED) suggests the
incipient development of a gap between both disks, these disks are called
pre–transitional disks (Pre–TDs). Several physical mechanisms have been
suggested to explain the gaps or holes in protoplanetary disks. The one
implemented in this work is driven by forming giant planets.

A key element that produces characteristic features in the SEDs of pro-
toplanetary disks is the inner wall of the gap or hole. To simplify SED wall
models, it is often assumed that the wall is vertical and frontally irradiated
by the central star. However, for walls of dust sublimation it has been
proposed that the wall is curved, where the dust grain growth and its fall
into the mid–plane of the disk, and the heigh–dependent gas density are
the physical mechanisms responsible for such curvature.

In the current work, in order to create more realistic SED wall models
of gaps and holes in protoplanetary disks with planet formation, we de-
veloped a computational and geometrical code, artemise, which analyses
tri–dimensional simulations of the disk–planet interaction to find the geom-
etry or shape of the wall, by considering the wall is located at the points
px, y, zq where the optical depth is τwall “ 2

3
. We developed a second code,

rhadamante, to construct the SED of the wall by using the wall geometry.
In both codes the disk opacity is calculated by using the Mie theory. It is
assumed that the disk consists of a mixture of dust grains composed of sili-
cates, organics and troilite. Where we considere two populations of spherical
grains, obeying the standard MRN grain size distribution npaq „a3.5.

We applied our codes to study the young stellar system LkCa 15. So
as to find the geometry of the wall of the outer dik, we launched several

xi



Abstract

tri–dimensional spherical simulations of the disk with a 10 ME embedded
planet, via the free hydrodynamical code fargo–3D. We found that the
forming planet located at 32.3 AU opens a gap with radius Rwall “ 53 AU

as suggested by observations. The wall of the gap is curved, and it starts
at Rwall and finishes at 68.7 AU with 12 AU in height.

Based on the wall geometry we found, we presented a SED curved wall
model where the outer disk consists of small (amin “ 0.005µm, amax “
0.25µm) and big (amin “ 0.005µm, amax “ 1000µm) dust grains of glassy
olivine with 50% Fe and 50% Mg and with a small amount of organic and
troilite grains. In addition, we also presented a model where is considered
the contribution of the central star, the inner disk curved wall, and a partial
region of the outer disk curved wall, due to the inner disk shadow. Any
of the two models cannot fit the Spitzer IRS SED. However, the second
one is reasonable fitted for wavelengths between „15.5 and „18.0 µm (we
estimated χ2„0.076), and it shows a silicate feature at „10 µm. To get a
best fit to the observed SED we require to construct a model where we also
consider the contribution of the inner and outer disks, and an optically thin
region in the gap.

Finally, from a comparison between vertical and curved SED wall mod-
els, considering the shadow cast by the inner disk, via the rhadamante
code, we found that vertical walls located at 53, 58.11, 60.85 and 68.7 AU

with 12 AU in height, show a diffrence in flux in about one order of magni-
tude compared to the flux emitted by a curved wall, with 12 AU in height
and starting at 58.11 AU and finishing at 68.7 AU, for wavelegths between
8 and 35 µm. It means that vertical walls show an excess in flux, which
suggests that curved wall instead of vertical walls should be considered to
fit the observed SED of LkCa 15.
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